首页> 外文OA文献 >Belief consensus algorithms for fast distributed target tracking in wireless sensor networks
【2h】

Belief consensus algorithms for fast distributed target tracking in wireless sensor networks

机译:用于无线传感器网络中快速分布式目标跟踪的信念共识算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In distributed target tracking for wireless sensor networks, agreement on the target state can be achieved by the construction and maintenance of a communication path, in order to exchange information regarding local likelihood functions. Such an approach lacks robustness to failures and is not easily applicable to ad-hoc networks. To address this, several methods have been proposed that allow agreement on the global likelihood through fully distributed belief consensus (BC) algorithms, operating on local likelihoods in distributed particle filtering (DPF). However, a unified comparison of the convergence speed and communication cost has not been performed. In this paper, we provide such a comparison and propose a novel BC algorithm based on belief propagation (BP). According to our study, DPF based on metropolis belief consensus (MBC) is the fastest in loopy graphs, while DPF based on BP consensus is the fastest in tree graphs. Moreover, we found that BC-based DPF methods have lower communication overhead than data flooding when the network is sufficiently sparse.
机译:在用于无线传感器网络的分布式目标跟踪中,可以通过构建和维护通信路径来达成目标状态的约定,以便交换有关局部似然函数的信息。这种方法缺乏对故障的鲁棒性,并且不容易应用于自组织网络。为了解决这个问题,已经提出了几种方法,这些方法允许通过完全分布式的信念共识(BC)算法就全局似然性达成一致,并在分布式粒子滤波(DPF)中对局部似然性进行操作。但是,尚未对收敛速度和通信成本进行统一比较。在本文中,我们提供了这样的比较,并提出了一种基于信念传播(BP)的新颖BC算法。根据我们的研究,基于大都会信念共识(MBC)的DPF在循环图中是最快的,而基于BP共识的DPF在树图中是最快的。此外,我们发现,当网络足够稀疏时,基于BC的DPF方法比数据泛洪具有较低的通信开销。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号